مطالعه هر شاخه از فیزیک با جدا کردن ناحیه محدودی از فضا یا قسمت محدودی از ماده از محیط آن آغاز میشود. قسمت برگزیده که موردتوجه قرار میگیرد، سیستم، و هرچه که در خارج آن قرار دارد و در نحوه رفتار آن نقش مستقیم دارد، محیط خوانده میشود. وقتی یک سیستم انتخاب شد، قدم بعدی توصیف آن برحسب کمیتهایی است که به رفتار سیستم یا برهمکنشهای آن با محیط، یا هر دو مربوطاند. بهطورکلی دو دیدگاه وجود دارد که پذیرفتنی است، دیدگاه ماکروسکوپیکی و دیدگاه میکروسکوپی.
برای توصیف ماکروسکوپیکی یک سیستم مثل مواد داخل یک سیلندر موتور اتومبیل از چهار کمیت که عبارتاند از ترکیب، حجم، فشار، دما استفاده میشود.این کمیتها به مشخصات کلی، یا خواص بزرگمقیاس سیستم مربوط میشوند و مبنای توصیف ماکروسکوپیکی سیستم را تشکیل میدهند. لذا این کمیتها، مختصات ماکروسکوپیکی خوانده میشوند. کمیتهایی که برای توصیف ماکروسکوپیکی سایر سیستمها باید مشخص شوند،البته، متفاوتاند، ولی مختصات ماکروسکوپیکی عموماً دارای ویژگیهای مشترک زیر میباشند:
-
- هیچگونه فرض خاصی درباره ساختار ماده در برندارند.
-
- تعداد آن ها کم است.
-
- آن ها را کموبیش مستقیماً با حواس خود درمییابیم.
-
- عموماً میتوان آن ها را مستقیماً اندازهگیری کرد.
تأکید میکنیم که دیدگاه ترمودینامیک کلاسیک، کاملاً ماکروسکوپیکی است. قانون اول ترمودینامیک، عبارت از رابطهای است بین کار، انرژی داخلی و گرما که کمیتهای اساسی فیزیک هستند. وقتیکه قانون اول در مورد ردهای از سیستمها به کار میرود، یک رابطه کلی به دست میآید که در مورد هر عضوی از رده برقرار است اما شامل هیچ کمیت با ویژگی که متعلق به یک سیستم خاص باشد و آن را از دیگران متمایز سازد، نیست. مثلاً معادله روبهرو برای تمام سیستمهای هیدروستاتیکی، اعم از جامد، مایع و یا گاز برقرار است. این معادله ما را قادر میسازد تا یک سیستم هیدروستاتیکی را، بهشرط دانستن انرژی داخلی برحسب تابعی از و ، محاسبه کنیم. گرمای منتقلشده در طی یک فرایند همحجم را که عبارت است از:
میتوان هنگامیکه یک سیستم خاص موردنظر برحسب معلوم است، محاسبه کرد. اما در ترمودینامیک کلاسیک چیزی وجود ندارد که اطلاعات تفصیلی در مورد و در اختیارمان بگذارد.
یک مثال دیگر از محدودیت ترمودینامیک کلاسیک، ناتوانی آن در به دست آوردن معادله حالت یک سیستم مطلوب است. برای استفاده هر معادله ترمودینامیکی که شامل و و و مشتقات آن ها ، ، است، باید یک معادله حالت داشته باشیم. مقادیر تجربی، اغلب اوقات مفیدند، ولی در مواردی وجود دارند که انجام آزمایشهای ضروری، عملی نیست.
۶-۱ دیدگاه میکروسکوپیکی
برای به دست آوردن اطلاعات دقیق راجع به مختصات ترمودینامیکی و ویژگیهای گرمایی سیستمها، بدون اینکه مجبور باشیم به اندازهگیریهای تجربی متوسل شویم، نیاز به محاسباتی داریم که مبتنی بر ویژگیها و رفتار مولکولهای سیستم باشند. دو فرضیه میکروسکوپی وجود دارد؛ یکی نظریه جنبشی، و دیگری مکانیک آماری. هر دو فرضیه، مولکولها، حرکت داخلی و خارجی آن ها با یکدیگر و با دیوارههای موجود و نیروهای برهمکنش آن ها را موردبحث قرار میدهند. با بهره گرفتن از قوانین مکانیک و نظریه احتمالات، نظریه جنبشی به جزئیات حرکت و برخورد مولکولی میپردازد و قادر است وضعیتهای ناپایدار زیر را بررسی کند:
-
- مولکولهایی که از روزنه موجود در یک ظرف به خارج میگریزند و فرایند موسوم به برون پخشی را به وجود میآورند.
-
- مولکولهایی که در یک لوله در اثر اختلاف فشار حرکت میکنند، و جریان آرام لایهای را به وجود میآورند.
-
- مولکولهایی که دارای اندازه حرکتاند و از یک صفحه عبور میکنند و با مولکولهایی که اندازه حرکتشان کمتر است مخلوط میشوند. این فرایند مولکولی عامل چسبندگی است.
-
- مولکولهایی که دارای انرژی جنبشیاند و از یک صفحه عبور میکنند و با مولکولهایی که انرژی کمتری دارند مخلوط میشوند. این فرایند عامل رسانش گرماست.
-
- مولکولهای همنوعی که از یک صفحه عبور میکنند و با مولکولهایی از نوع دیگر مخلوط میشوند. این فرایند مرسوم به پخش است.
-
- ترکیب شیمیایی بین دو یا تعداد بیشتری از انواع مولکولها، که با سرعت محدودی صورت میگیرد و به سینتیک شیمیایی معروف است.
-
- عدمتساوی برخوردهای مولکولی با وجوه مختلف یک جسم خیلی کوچک که در یک سیال معلق است. این عدمتساوی باعث میشود که جسم معلق حرکت زیگزاگی اتفاقی داشته باشد که به حرکت براونی مرسوماند
در مکانیک آماری از پرداختن به جزئیات مکانیکی مربوط به حرکتهای مولکولی اجتناب شده است، و فقط جنبههای انرژی مولکولها در نظر گرفته میشوند. مکانیک آماری تا حد زیادی به نظریه احتمالات متکی است ولی ازنظر ریاضی سادهتر از نظریه جنبشی است، اگرچه درک آن مشکلتر است. فقط حالتهای تعادل قابلبررسی هستند، اما بهگونهای یکنواخت و مستقیم بهطوریکه وقتی ترازهای انرژی مولکولها و یا سیستمهایی از مولکولها شناخته میشوند میتوان یک برنامه محاسباتی به اجرا درآورد که از طریق آن، معادله حالت، انرژی و سایر توابع ترمودینامیکی به دست آیند.
ازنظر مکانیک آماری، یک سیستم متشکل است از تعداد بسیار زیادی مولکول، ، که هرکدام از این مولکولها میتواند در مجموعهای از حالتهایی که انرژی آن ها مساوی ۱ԑ ، ۲ԑ و… است، قرار گیرد. فرض بر این است که مولکولها در اثر برخورد یا توسط نیروهایی که بهوسیله میدان ایجادشدهاند، با یکدیگر برهمکنش میکنند. سیستم مولکولها را میتوان بهصورت منزوی در نظر گرفت و یا، در بعضی موارد، میتوان فرض کرد که مجموعهای از سیستمهای مشابه، آن ها را در برگرفتهاند. مفاهیم احتمالاتی به کار گرفته میشوند و فرض میشود که حالت تعادلی سیستم حالتی است که احتمال آن بیشینه است. مسئله اساسی تعداد مولکولها در هر یک از حالتهای انرژی مولکولی(که به جمعیت این حالتها موسوماند) را، به هنگام حصول تعادل بدانیم. توصیف میکروسکوپیکی یک سیستم شامل مشخصات زیر است:
-
- فرضهایی درباره ساختار ماده، مثلاً وجود مولکولها، میشود.
-
- کمیتهای زیادی باید مشخص شوند.
-
- کمیتهای مشخصشده توسط حواس ما دریافت نمیشوند.
-
- این کمیتها را نمیتوان اندازه گرفت.
۷-۱ مقایسه دیدگاههای ماکروسکوپیکی و میکروسکوپیکی
اگرچه ممکن است اینطور به نظر برسد که این دو دیدگاه بسیار متفاوت و با یکدیگر ناسازگارند، اما رابطهای بین آن ها موجود است، و وقتیکه هر دو دیدگاه در مورد یک سیستم به کار روند، باید نتیجه یکسانی به دست دهند.رابطه بین این دو دیدگاه در این واقعیت نهفته است که ویژگیهای معدودی که مستقیماً قابلاندازهگیری هستند و مشخص کردن آن ها همان توصیف ماکروسکوپیکی سیستم است، درواقع میانگینهای زمانی تعداد زیادی از مشخصه های میکروسکوپیکی در یک مدتزمان هستند. مثلاً، کمیت ماکروسکوپیکی فشار، عبارت است از میانگین آهنگ تغییرات اندازه حرکت ناشی از تمام برخوردهای مولکولی در واحد مساحت. باوجوداین، فشار خاصیتی است که توسط حواس ما قابلدرک است. ما آثار فشار را احساس میکنیم. فشار خیلی پیشازاین که فیزیکدانان دلیلی بر وجود برخوردهای مولکولی داشته باشند مورد تجربه و اندازهگیری و استفاده قرارگرفته بود. اگر نظریه مولکولی تغییر کند، مفهوم فشار کماکان باقی خواهد ماند و همان معنی معمولی خود را نزد تمام انسانها خواهد داشت. در اینجا یک وجه تمایز مهم بین دیدگاههای ماکروسکوپیکی و میکروسکوپیکی وجود دارد. ویژگیهای ماکروسکوپیکی معدودی که قابلاندازهگیری هستند بهاندازه حواس آدمی قابلاطمیناناند. این ویژگیها تا وقتیکه حواس ما همینطور باقی بمانند، بدون تغییر باقی خواهند ماند. اما، دیدگاه میکروسکوپیکی خیلی از حواس ما فراتر میرود. این دیدگاه، وجود مولکولها، حرکت، حالتهای انرژی، برهمکنشهای آن ها و غیره را اصل قرار میدهد. دیدگاه میکروسکوپیکی دائماً در حال تغییر است، و ما هرگز نمیتوانیم از موجه بودن این اصول مطمئن باشیم مگر اینکه قبلاً برخی از نتایجی را که مبتنی بر آن ها هستند با نتایج مشابه مبتنی بر دیدگاه ماکروسکوپیکی، مقایسه کرده باشیم [۲].
فصل دوم
۱-۲مدول الاستیک
مدول الاستیک یا مدول الاستیسیته(modulus of elasticity)، یک تعریف ریاضی است از تمایل ذاتی اجسام برای تغییر شکل الاستیک(غیردائمی) زمانی که نیرویی به آن وارد میشود. مدول الاستیک بهطور فیزیکی برابر شیب منحنی تنش- کرنش در ناحیه تغییر شکل الاستیک است. بهطوریکه λ مدول الاستیک است و همچنین واحد آن همان واحد تنش است. بر اساس چگونگی اعمال تنش و کرنش انواع مدول الاستیک تعریف میشود و همچنین واحد آن همان واحد تنش است. بر اساس چگونگی اعمال تنش و کرنش انواع مدول الاستیک تعریف میشود. که در قسمت زیر به سه نمونه از مهمترین آن ها اشاره میکنیم:
۲-۲ مدول یانگ
که الاستیسیته کششی را شرح میدهد و تمایل جسم به تغییر شکل در راستایی که نیرو وارد میشود را توصیف میکند. اغلب بهعنوان حالت ساده از مدول الاستیک به کار میرود. در مکانیک جامدات، مدول یانگ را بهعنوان مدول کششی(tensile elasticity) میشناسند، که معیاری از سختی مواد الاستیک همسانگرد[۵] است. مدول یانگ بهعنوان نسبت تنش تکمحوری بر کرنش تکمحوری در محدوده قانون هوک تعریف میشود. این نسبت میتواند بهصورت تجربی از شیب منحنی تنش-کرنش طی آزمایش کشش بر روی نمونه به دست آید. بهطورمعمول و نه دقیق، مدول الاستیک یا مدول الاستیسیته نیز نامیده میشود، زیرا مدول یانگ معمولترین مدول الاستیک است، بههرحال دیگر مدولهای الاستیک عبارتاند از: مدول حجمی و مدول برشی. واحد: مدول یانگ نسبت تنش که برحسب پاسکال است، بر کرنش که بیبعد است میباشد؛ بنابراین مدول یانگ همان واحد تنش را دارا است.
۳-۲ مدول برشی
یا مدول سختی(rigidity) تمایل جسم به برش (تغییر شکل در حجم ثابت) در برابر نیروی وارد بر آن است ( تغییر شکل در حجم ثابت )، مدول برشی زیرشاخهای از ویسکوزیته میباشد.
۴-۲ مدول حجمی
که الاستیسیته حجمی را توصیف می کند، یا تمایل جسم را به تغییر شکل در تمام جهات را زمانی که نیرویی ثابت در تمام جهات وارد میشود؛ این پارامتر تنش حجمی را بر کرنش حجمی تعریف میکند و این عکس فشار پذیری است. مدول حجمی حالت سهبعدی مدول یانگ است.
۵-۲ کاربرد مدول یانگ
مدول یانگ این اجازه را میدهد تا رفتار یک تیر ساختهشده از مواد الاستیک (ایزوتروپ) تحت نیروی کششی یا فشاری محاسبه شود. بهعنوانمثال، میتواند برای پیشبینی مقدار ازدیاد طول میله تحت کشش و یا کمانش آن تحتفشار، استفاده شود. بیشتر محاسبات نیاز به اطلاع از دیگر خصوصیات ماده همچون، مدول برشی، دانسیته و نسبت پواسون دارد.
۶-۲ مواد خطی و غیرخطی
برای بیشتر مواد، مدول یانگ اساساً در یک بازه کرنش، ثابت است. این مواد خطی نامیده میشوند و از قانون هوک تبعیت میکنند. مثالهایی برای مواد خطی میتوان به فولاد، الیاف کربن اشاره کرد و موادی همچون شیشه، لاستیک و خاک مواد غیرخطی نامیده میشوند.
۷-۲ مواد جهتدار
مدول یانگ همواره در جهات مختلف یک ماده یکسان نیست. بیشتر فلزات و سرامیکها، به همراه بسیاری دیگر از مواد، همسانگرد(ایزوتروپ) میباشند؛ خصوصیات مکانیکی این مواد در تمام جهات یکسان است. غیر ایزوتروپی را میتوان بهراحتی در کامپوزیتها دید. بهطور مثال، الیاف کربن مدول بسیار بالاتری نشان میدهند زمانی که نیرو موازی الیاف وارد میشود در مقابل نیروی وارد در جهت عمود.
فرم در حال بارگذاری ...