روش خسته کننده است، وقت گیر بوده، ذراتی تولید می شود که به لحاظ شکل و اندازه نامنظم می باشند.
روشی ساده است، نیاز به مهارت خاصی ندارد، ناخالصی ناچیز بوده.
تودهای
عاری کردن محصول از ذرات بسیار ریز حلال در پایان سخت است، انتخاب حلال کاملاً بی اثر سخت است، طولانی شدن زمان انجام کامل واکنش.
انتقال حرارت کم، بوجود آمدن پدیده ژل در این سیستم ها ناچیز است، کنترل دمایی با سهو لت بیشتری انجام می شود.
پلیمریزاسیون محلولی
شرایط پلیمریزاسیون بدقت کنترل شود، حلال مصرفی در این روش زیاد است، زمان پلیمریزاسیون طولانی.
گرمای کمتری تولید می شود، در مقیاس های صنعتی بیشتر استفاده می شود، ذرات پلیمری کروی شکل می شود.
پلیمریزاسیون رسوبی
آب با بیشتر تولیدات قالبی ناسازگار است، جزءبندی فازهای سیستم سخت است، سورفکتانت ویژه پلیمریزاسیون مورد نیاز است.
کروی بودن اندازه ذرات، کوچک بودن اندازه ذرات، فاز پیوسته عموماً آب است.
پلیمریزاسیون امولسیونی
همزدن مکانیکی و حضور عوامل معلق کننده برای معلق نگاه داشتن مونومر ضروری می باشد،
اندازه و میزان تخلخل ذرات پلیمری با تغییر شرایط پلیمریزاسیون قابل تنظیم میباشد، تولید ذرات کروی شکل به حالت انبوه و متراکم، روشی مؤثر است زیرا تعداد زیادی از قطرات ریز با این روش پلیمریزه میشوند.
پلیمریزاسیون تعلیقی
شکل (۱-۱۱) پلیمریزاسیون تودهای [۲۷]
شکل (۱-۱۲) پلیمریزاسیون تعلیقی[۲۷]
۱-۹-۲-۲- روش پلیمریزاسیون محلولی
برای رفع مشکلات موجود در پلیمریزاسیون تودهای ، از روش پلیمریزاسیون محلولی استفاده می شود. در این روش، مونومر و پلیمر هر دو در یک حلال، محلول بوده و به علت وجود محیط حلالی، ویسکوزیته مخلوط نسبت به پلیمریزاسیون تودهای کمتر است که در نتیجه نه تنها اختلاط بهتر انجام گرفته و کارآیی شروع کننده افزایش مییابد، بلکه مسائلی مانند انتقال حرارت کم و بوجود آمدن پدیده ژل در این سیستم ها ناچیز است. به همین دلیل میتوان در این گونه سیستم ها به مقادیر تبدیل بالاتری رسید.به عبارت دیگر، از روشهای غلبه بر مشکلات موجود در پلیمریزاسیون تودهای ، حل کردن مونومر در یک حلال مناسب است. از آنجا که در این روش، در مقایسه با پلیمریزاسیون تودهای ، کنترل دمایی با سهولت بیشتری انجام می شود، مشکلات مربوط به گرمازا بودن واکنش، رفع خواهد شد. به عبارت دیگر در این روش به دلیل این که مونومر با یک مایع بیاثر رقیق می شود، کنترل دمای واکنش بسیار آسانتر خواهد شد. گرمای حاصل از واکنش را میتوان با بازگرداندن و یا رفلاکس حلال، از محیط واکشن خارج نمود. البته، معایبی نیز برای پلیمریزاسیون محلولی وجود دارد. عاری کردن محصول از ذرات بسیار ریز حلال در خاتمه عمل، با مشکل همراه است. انتخاب حلال کاملا بیاثر، به آسانی امکان پذیر نیست، بدین معنا که همواره انتقال زنجیر به حلال و محدود شدن وزن مولکولی محصول وجود خواهد داشت. این نکته، دارای اهمیت زیادی بوده و دلیل کاربرد کم روش محلولی در تولید پلیمرهای مهم اقتصادی است. همچنین دمای پلیمریزاسیون به نقطه جوش حلال محدود می شود و در بسیاری از موارد این مسئله منجر به طولانی شدن زمان انجام کامل واکنش میگردد. به عبارت دیگر دمای واکنش از نقطه جوش حلال به کار رفته بالاتر نخواهد رفت و این امر سرعت واکنش را محدود می کند[۲۷و۲۸].
۱-۹-۲-۳- پلیمریزاسیون تعلیقی (سوسپانسیونی)
در حقیقت این روش نیز برای جبران نقایص پلیمریزاسیون تودهای به کار میرود. این روش، بسیار شبیه به پلیمریزاسیون محلولی است، با این تفاوت که مونومر به جای حل شدن در یک مایع بیاثر (مانند آب) با بهره گرفتن از یک حلال پخش کننده به صورت معلق در آن در می آید. انتقال حرارت و کاهش ویسکوزیته مانند پلیمریزاسیون محلولی است، همچنین همزدن مکانیکی و حضور عوامل معلق کننده برای معلق نگاه داشتن مونومر، ضروری میباشد. این روش، روشی مؤثر است زیرا تعداد زیادی از قطرات ریز با این روش پلیمریزه میشوند. روش فوق منجر به تولید ذرات کروی شکل به حالت انبوه و متراکم می شود، و در صورتی که سیستم به اندازه کافی رقیق باشد، ذرات کره مانند متحدالشکل ریزی تولید میشوند (در محدوده ۵ تا ۵۰ میکرومتر). در این روش پلیمریزاسیون، اندازه و میزان تخلخل ذرات پلیمری با تغییر شرایط پلیمریزاسیون قابل تنظیم میباشد[۲۷]. نمونه ای از پلیمر تهیه شده با این روش در شکل (۱-۱۲) نشان داده شده است.
۱-۹-۲-۴- روش پلیمریزاسیون امولسیونی
در یک پلیمریزاسیون امولسیونی، مونومرها به صورت ذرات بسیار ریز (فاز ناپیوسته) در یک فاز پیوسته سیال، توسط عوامل پایدارکننده سطحی (به صورت معلق) از طریق واکنش رادیکال آزاد پلیمریزه میشوند. فاز پیوسته عموما آب بوده و ذرات معلق کلوئیدی در اندازهای بسیار کمتر از یک میکرون میباشند. کروی و کوچک بودن اندازه ذرات، یکی از مزایای عمده این نوع پلیمریزاسیون است. در این سیستم نیز از آب به عنوان حامل استفاده می شود. در اینجا نیز برخی عوامل معلق ساز به نام سورفکتانت به سیستم افزوده می شود. معلق سازها در واقع مایسلهایی ایجاد می کند و به این ترتیب قسمت عمدهای از مونومر را که به صورت قطرههای کوچک پراکنده میشوند انحلالپذیر می کند. رادیکالهای شروع کننده که در آب حل میشوند به درون مایسلهایی که مملو از مونومر هستند، نفوذ می کنند و پلیمریزاسیون شروع می شود. مایسلها مانند مکانهایی که در آنها مونومر به پلیمر تبدیل می شود عمل می کنند[۲۸].
شکل (۱-۱۳) پلیمریزاسیون تهنشینی[۲۷]
۱-۹-۲-۵- پلیمریزاسیون تهنشینی (رسوبی)
این روش از جمله روشهای پلیمریزاسیون هست که باعث بدست آمدن ذرات پلیمری کروی شکل می شود. دراین روش پلیمریزاسیون هنگامی که پلیمر تشکیل شده به لحاظ اندازه یا وزن به یک حد مشخص میرسد، شروع به ته نشینی می کند و اغلب اندازه ذرات بیشتراز ۱۰ میکرو متر نمی شود. در این روش برای بدست آوردن محصول با کیفیت بالا باید شرایط پلیمریزاسیون به دقت کنترل شود. پلیمریزاسیون تهنشینی، تقریباً مشابه روش پلیمریزاسیون تودهای میباشد با این تفاوت که حجم حلال مصرفی در این روش بسیار بیشتر میباشد (در حدود ۲ تا ۱۰ برابر). در نتیجه استفاده از حجمهای بیشتر حلال، شانس تماس بین گونه هدف و مونومر عاملی نیز کمتر می شود که منجر به زمان پلیمریزاسیون طولانیتر این روش در مقایسه با روش تودهای می شود. همچنین از آنجایی که فاصله بین گونه هدف و مونومر عاملی در این روش نسبتا زیاد میباشد و در نتیجه گرمای کمتری نیز در این روش سنتزی در مقایسه با سایر روشها تولید می شود که باعث کاربرد بیشتر این روش درمقیاسهای صنعتی می شود. در این روش عموماً ذراتی در ابعاد۳/۰ تا ۱۰ میکرومتر تولید میشوند[۲۶]. از جمله معایب این روش میتوان به زمان بر بودن آن، همچنین نیاز به شرایط ویژه برای آن اشاره کرد. نمونه ای از پلیمر تهیه شده با این روش در شکل (۱-۱۳) نشان داده شده است.
۱-۱۰- اهمیت و کاربردهای پلیمرهای قالبی
در تحقیقات انجام شده در زمینه پلیمرهای قالبی، جدای از اهمیت گونه الگوی به کار رفته (داروها، سموم، ترکیبات آلی، کاتیون ها و…) توسعه دانش فنی ساخت پلیمرهای قالب مولکولی یا یونی بسیار حائز اهمیت است. این پلیمرهای هوشمند، پلیمرهای سنتزی با گزینشپذیری بالا برای مولکول الگو هستند. با توجه به مزایایی نظیر گزینشپذیری، آزادی عمل برای طراحی مولکولی، پایداری مکانیکی و شیمیایی، سادگی و ارزان قیمت بودن، تحقیقات گستردهای در این زمینه صورت گرفته، که منجر به کاربردهای متعدد این روش شده است. از طرفی، بسیاری از مفاهیم مربوط به این علم نیز ازجمله نوع برهمکنشها، ویژگی نانوحفرهها و … با انتخاب مولکولهای الگوی متفاوت به دست آمده است. در گذشته برای سنتز ترکیباتی که برهمکنش مناسبی با گونه مورد نظر داشته باشند یا حفره مشابهی با گونه مورد نظر داشته و از آنها بتوان برای اندازه گیری یا جداسازی این گونه ها استفاده کرد، طی مدتهای طولانی با روشهای پیچیده، پرهزینه و چند مرحله ای این مواد تهیه میشدند. در صورتی که با دستیابی به دانش فنی ساخت پلیمرهای قالب مولکولی برای بسیاری از مواد میتوان به راحتی، با هزینه پایین و در زمان کمتر، این آنتی بادیهای مصنوعی را ساخت. امتیاز دیگر این روش، گزینش پذیری بالای آن است که نسبت به روش های دیگر بسیار بیشتر است. اهمیت دیگر پلیمرهای قالب مولکولی در روش های جداسازی و اندازه گیری داروها، سادگی این روشها و امکان اتوماسیون روشهاست. از آنجا که پلیمرهای قالب مولکولی یا یونی ، توانایی جذب کاملا گزینشی گونه هدف را دارند، امکان جداسازی گزینشی گونه هدف در ماتریسهای پیچیده به طور مستقیم وجود دارد. این روش نسبت به روشهای دیگر مبتنی بر روش استخراج مایع -مایع حد تشخیص را ۱۰۰ تا ۱۰۰۰ برابر پایین میآورد. در ادامه به بعضی از کاربردهای این نوع پلیمرها اشاره می شود.
۱-۱۰-۱- جداسازی
کاربرد پلیمرهای قالب مولکول به عنوان فاز ساکن در کروماتوگرافی، بیشترین کار پژوهشی روی آن صورت گرفته است. قالب زنی یک راه ساده و مستقیمی را برای جداسازی انتخابی مواد فراهم میکند. لیست مولکولهایی را که مورد آزمون قرارگرفتهاند شامل بیوملکولهای نظیر آمینواسیدها[۹و۲۹] پپتیدهای کوچک[۳۰[، پروتئینها[۳۱]، کربوهیدراتها[۳۲] و تعدادی از مولکولهای دارویی کوچک میباشند. در زمینه جداسازی، مسئله تفکیک انانتیومرها با بهره گرفتن از پلیمرهای قالب در مرکز توجه بسیاری از پژوهشها بوده است. شماری از فازهای ساکن کایرال تجاری وجود دارند که برای جداسازی انانتیومرها استفاده میشوند. فازهای ساکن کایرال قالبی یک نظم وترتیب شویش قابل پیش بینی دارند که فازهای ساکن کایرال تجاری موجود فاقد آنند. اولین نمونه استفاده از پلیمرهای قالب ملکول به عنوان فاز ساکن کایرال قالب زنی توسط مسباخ وهمکارانش[۲۴] گزارش شد. در این گزارش مسباخ جداسازی انانتیومری مستقیم β- گیرنده (-)-تیمولول (شکل(۱-۳)) را با بهره گرفتن از یک فاز ساکن کایرال تهیه شده به روش قالب زنی مولکولی انجام داد.
شکل (۱-۱۴) ساختار گیرنده بتا- آدرنرجیک تیمول، اتنول و پروپانول[۲۴]
شکل (۱-۱۵) تصویر میکرووسکوپ الکترونی غشای نفوذپذیر یون اورانیل]۳۳[
با وجودی که عمده پژوهش های جداسازی بر روی تهیه فاز های ساکن برای HPLC متمرکز شده است[۲۵]، پلیمرهای قالب ملکول نیز برای تکنیکهای تجزیهای دیگری مورد استفاده قرار گرفته اند. یکی از کاربردهای مهم پلیمرهای قالب ملکول در استخراج فاز جامد است. انتخابگری ار پیش تعیین شده پلیمرهای قالبی و داشتن انتخابگری بالای جاذبها میتواند این سیستمها را بسیار کارا سازد. مواد استخراج فاز جامد قالب مولکولی توانایی خود را برا بهبود حساسیت برای آنالیز نمونه های زیست محیطی مقادیر بسیارکم از طریق استخراج حجمهای بزرگ نمونه نشان داده است. الکتروفورز کاپیلاری با بهره گرفتن از فاز ساکن قالب مولکولی و رانش فاز متحرک الکترواسمزی نیز بررسی شدهاند[۳۴]. این روش پتانسیل را دارد که عملکرد بهتری نسبت به HPLC داشته باشد و نیز مزیت به حداقل رسانی مصرف مواد شیمیایی به ویژه مولکول الگو را دارد. استفاده از غشاهای پلیمر قالب مولکولی برای انتقال مولکولها زمینه تحقیقات وسیعی است. جداسازی برپایه غشاها بالقوه دارای کارایی بیشتر نسبت به تکنیکهای جداسازی رقیب است. کاربردهای بالقوه آن در صنایع جداسازی گازها، پتروشیمی و دارویی وجود دارد.
۱-۱۰-۲- ساخت غشاء
استفاده از تکنولوژی پلیمر قالب مولکولی و یونی در ساخت غشاهای مختلف ازدیگر کاربردهای جدید آنها میباشد. غشاهای ساخته شده با این روش تمایل به جذب بالاتر و انتخابگری بالاتر در نفوذ مولکولها و یونهای هدف نشان می دهند. اولین غشاء با بهره گرفتن از پلیمر قالب یونی در سال ۲۰۰۱ به وسیله کیمارو[۲۷]و همکارانش جهت جداسازی یون اورانیل از طریق پلیمریزاسیون رسوبی ساخته شد[۳۴]. شکل (۱-۱۵) تصویر میکرووسکوپ الکترونی[۲۸] غشای نفوذپذیر یون اورانیل را به خوبی نشان میدهد.
۱-۱۰-۳- ساخت حسگر یا الکترود
ساخت حسگرهای شیمیایی، الکتروشیمیایی و زیستی از جمله کاربردهای جدید پلیمرهای قالب مولکولی و یونی در تشخیصهای پزشکی، تجزیه نمونههای محیطی و غذایی و کنترل آلودگی میباشد. براساس نوع مبدل، حسگرها براساس خواص الکتروشیمیایی یا خواص طیف سنجی هستند. پلیمرهای قالبی با گستره وسیعی از انتقال دهندههای علائم پتانسیومتری و آمپرومتری ترکیب شده اند. اولین الکترود یون گزین بر اساس تکنولوژی پلیمر قالب یونی و خواص الکتروشیمیایی جهت تشخیص یونهای کلسیم و منیزیم در سال۱۹۹۱به وسیله روساتزین [۲۹]و همکارانش ساخته شد که با روش پتانسیومتری این یونهای کلسیم و منیزیم با فاکتور گزینشپذیری به ترتیب ۶ و۷/۱ تشخیص داده شدند[۳۵] و اولین حسگر بر اساس تکنولوژی پلیمر قالب یونی و مبدل طیف سنجی (فلئورسانس) نیز در سال۱۹۹۷ به وسیله موری[۳۰] و همکارانش برای یون سرب ساخته شد[۳۶].
بازنگری جدیدی، حسگرهای الکتروشیمیایی مبتنی بر پلیمرهای دارای قالب مولکولی را تحت پوشش قرار میدهد. بدین صورت که در طراحی این حسگرها درصدی از پلیمرهای قالب مولکولی به عنوان اصلاحگر اضافه می شود. حالا از این حسگر در محلول حاوی آنالیت مورد نظر که در ساخت پلیمر از آن استفاده شده و این پلیمر قابلیت جذب آن را دارد به عنوان الکترود شناساگر استفاده می شود. بر این اساس، شاهد کاربرد روزافزون این مواد پلیمری در حسگرهای الکتروشیمیایی (پتانسیومتری، آمپرومتری، هدایت سنجی) و همچنین حسگرهای نوری میباشیم.
پلیمرهای قالب ملکول به عنوان عناصر تشخیص در ابزارهای حسگرهای شیمیایی استفاده میشوند. حسگرهای زیستی از عنصر تشخیصی مثل یک آنتیبادی یا آنزیم به همراه یک مبدل استفاده میبرند. یک سیگنال شیمیایی حاصله از پیوند آنالیت به گیرنده که بعداً به یک سیگنال الکتریکی یا نوری تبدیل می شود را بتواند رصد شود. در بسیاری موارد، توسعه اجزاء تشخیص دهنده فراتر از روشهای تبدیل سیگنال نظیر نوری، مقاومتی، موج اکوستیک سطحی یا اندازهگیری ظرفیت الکتریکی قرار میگیرد. پتانسیل قابل توجهی برای ابزارهای حسگر شیمیایی چنانچه اجزاء تشخیص دهنده موجود باشند.
مزیتهای بالقوهای که با بهره گرفتن از پلیمرهای قالب ملکولی به عنوان عنصرتشخیص دهنده به جای گیرندههای بیولوژیکی حاصل میشود. از آنجاییکه پلیمرهای قالب ملکولی گیرندههایی مصنوعیاند، ذخیرهای مجازی از آنالیتها دارند. بعلاوه، پلیمرهای قالب ملکولی در مقابل شرایط نامساعد پایدارند که قابل قیاس با حسگر های برپایه بیولوژیکی نیست . مضافا، قابلیت آنها برای بکارگیری عنصر سیگنال دهنده، نظیر میله فلوئورسانس، که درمجاورت سایت پیوندی میتوان در سنسور استفاده کرد. ممکن است سنسورهایی با آرایهای از پلیمرهای قالبی برای تعدادی از آنالیتها جهت ساخت یک سنسور تکی که قادر به شناسایی مواد متعدد باشد، به کار برد. استفاده از اسپکتروسکپی لومینسانس ترکیب شده با فایبر اپتیک سیستمهایی برای کاربرد حسگرها مهیا می کند. استفاده از پلیمر قالبزنی مولکولی در ترکیب با این سیستم میتواند انتخابگری شیمیایی را به این نوع حسگرها اضافه کند. این تکنولوژی برای تشخیص انواع زیادی از ترکیبات شامل عوامل عصبی[۳۱]، علف کش[۳۲]، مولکولهای دارویی[۳۶] و بیومولکولها به کار میرود[۳۷]. مسباخ و همکاران با بهره گرفتن از یک ابزار حسگر الیاف نوری بر پایه پلیمرهای قالب ملکولی یک آمینو اسید فلوئورسانسنشان (دانسیل-ال-فنیل آلانین) را نشان دادند. این مواد با بهره گرفتن از متاکرلیک اسید[۳۳] و ۲- وینیلپیریدین[۳۴] بعنوان مونومر ها و اتیلنگلیکولدیمتاکریلات[۳۵] به عنوان مونومر شبکه کننده تهیه شدند. یک سیستم ساخته شد که درآن ذرات پلیمر در مقابل نوک الیاف نوری با بهره گرفتن از یک تور نایلون نگه داشته شد[۳۹]
فرم در حال بارگذاری ...